SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 1

SOLUTIONS

In the following problems, a “fake n-manifold” is a topological space M which is locally Euclidean.
That is, for every point p € M, there exists a neighborhood U C M of p, an open set V C R" and
a homeomorphism ¢ : U — V.

Problem 1. Let M be a connected topological n-manifold, and C' C M be a closed proper subset.
Let M/ be the set

f_ . CLZO, $¢C
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Define a topology on M7 as being generated by two types of open sets from derived from the
topology on M: If U C M is open, let

o U ={(2,0):x c U\ C}U{(x,1): 2 € CNU}, and

e U’ ={(2,0):2 € U\CYU{(z,~1):z € CNU}.
Show that, with the topology generated by sets of the form U? and U”, M7 is a fake n-manifold,
but not a manifold. What happens if C' = M?

Solution. We first claim that M/ is locally Euclidean. Fix p/ = (p,0) € M/f. Since M is an
n-manifold, there exists some U C M and some map ¢ : U — R" which is a homeomorphism onto
its image.
Case: p ¢ C. In this case Uy = U \ C still contains p, and ¢|y, is a homeomorphism onto its
image, since it is the restriction of a homeomorphism. Therefore, Uy x {0} € M7 is open and
of (x,0) = p(z) is a homeomorphism onto its image, since Ug = Ug projects to Up.
Case: p € C. In this case, 0 = 1. Without loss of generality consider ¢ = 1. With U as above,
we claim that the set U* is naturally homeomorphic to U (which is itself homeomorphic to an open
subset of R"). Indeed, define gy : U — U* by g(p) = (p,1). Since the topology on U* is generated
by sets of the form VN U* and VN U!, where V C M is open, we must show that their projection
to M is open. Indeed, the M-projection of VENU* is V N U, and the M-projection of V? N U+ is
(V\C)NU. Since C is closed, this set is open. Conversely, if V' C U is open, then V# = g4(V) C U*
is open. Thus, we conclude that gy is a homeomorphism, and M f is locally Euclidean.

Finally, we claim that M/ is not Hausdorff. Indeed, pick any p € C such that every neigbhorhood
U of p is not contained in C. Such a point must exist, otherwise every point of C is an interior
point, and C' is both open and closed. Since M is connected, C would be trivial or empty, which
violates that it is proper. Now, with such a p in hand, notice that (p,1), (p, —1) € M/ are points,
and any neighborhood of (p,1) must be of the form Uf , where Uj is a neighborhood of p, while
any neighborhood of (p, —1) must be form UQ", where Us is a neighborhood of p. Then Uy N Us
is a neighborhood of p, and by choice of p, Uy N Uy N (M \ C) # 0. Therefore, Uf N U contains
(U1NUyN (M \ C)) x {0}, which is nonempty. Therefore, M/ is not Hausdorff. Note that if C' = M,

then M” is exactly M x {—1,1}, which is a manifold. O
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Problem 2. Give an example of a Hausdorff fake n-manifold which is not a manifold (and justify
why it is not a manfiold).

Solution. Let S be any set of uncountable cardinality, and give it the discrete topology. Then
M# =R x 8 is locally Euclidean (it is locally homeomorphic to R. However, {0} x S is exactly S
with the discrete topology, which does not have a countable basis. Therefore, M7 is not a manifold,
since it is not second countable. (]

Problem 3. Show that S™ = {z € R"*! : ||z|| = 1} has a canonical smooth n-manifold structure
by explicitly finding a smooth atlas and showing the atlas is smooth.

Solution. We use the stereographic projections to construct our charts. Let pi(x1,...,Zp41) =
jE— (2z1,...,2x,) be defined from S™\ {(0,...,0,1)} to R". We claim that ¢; is a homeomor-
phism onto its image. Indeed, its inverse can be computed explicitly, and is the rational function

1
1 _ 2
o1 (Y1, Yn) = 11552 <4y1,--~74yn,—4+zyi>'

Similarly, we let @a(x1,...,2p41) = 211, ...,2x,) be defined on S™\ {(0,...,0,—1)}.
Then

1
1+$n+1 (

_ 1
03 W1s- o) = 1152 <4y17--~74yn74_zyi2)'
(2

To show that ¢1 and ¢o form a smooth atlas, we must confirm that ¢ 0 ¢y !is a diffeomorphism
from R™\ {0} to itself. Indeed,

_ 443 y?
i

which is indeed a well-defined diffeomorphism from R™ \ {0} to itself. O

Problem 4. Show that if M is a smooth m-manifold and NV is a smooth n-manifold, then M x N
has a canonical smooth (m 4 n)-manifold structure.

Solution. First, notice that if M and N are both Hausdorff and second countable, then so is M x N.
We now construct a smooth atlas on M x N. Indeed, fix atlases Ap; for M and Ay for N,
respectively. Then if (U, ) € Ay and (V,9)) € Ay, let ¢ x ¢ : U x V. — R"™™ be defined by
e x Pz, y) = (@), ¥(y))

We claim that the collection of pairs (¢ x 1, U x V') € Apr X Ay is a smooth atlas. Indeed, notice
that Uy x V4 and Us x V3 intersect if and only if Uy NUs # () and Vi x Vo # (). Furthermore, the
corresponding maps satisfy:

(02 X P2) o (w1 X 1) ™" = (pao @) X (oot ),
which is verified directly by computation. Since the maps repsect the decomposition into direct
products, it is C* since each component is C*°. Therefore, we have constructed a smooth atlas. [J

Problem 5. Show that R?\ {0}, A = {z € R? : 1 <||z|| < 2} and S* x (0, 1) are all diffeomorphic
with their standard smooth structures.

Solution. We construct a diffeomorphism between S* x (0,1) and the first two manifolds. First,
define F: S x (0,1) — R?\ {0} as
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F(z,t) =

Then F is invertible and F~1(y) = (y/ ||y, |lyl| /(1 +ly||)). Since ||-|| is differentiable except at
y = 0, F is a diffeomorphism between S' x (0,1) and R? \ {0}.

Now we construct a diffeomorphism between S x (0,1) and A. Let G(z,t) = (t+1)z. It is clear
that G is smooth and that G=1(y) = (y/ ||y||,||y|| — 1). Therefore, G is a diffeomorphism O

Problem 6. Let X denote the boundary of the unit square in R2. Prove or find a counterexample:

(1)
(2)
(3)
(4)

X is a topological 1-manifold.

There exists a smooth structure on X.

There exists a smooth structure on X such that the inclusion of X into R? is C*.

There exists a smooth structure on X such that the inclusion of X into R? is an immersion.

Solution.

(1) and (2)

These exist. Choose any homeomorphism between 9I? and S!. For instance, define
F :0I? — S by ¢(z) = x/||z|| (here, we take I = [~1/2,1/2] rather than [0,1]). If
Uc S'and ¢ : U — R is a smooth chart for St let V = F~}(U) and $(z) = ¢ o F. We
claim that the collection of charts @, where ¢ is a smooth chart for S' is a smooth structure.
Indeed, the transition functions are exactly

Groge b= (pr1oF)o(pao0F)t=propyt.

These are clearly C°°, so we have constructed a smooth structure. Furthermore, the map
F is a diffeomorphism when using these charts, since when using the charts ¢ and ¢ on S*
and OI2, respectively, the map F is represented by the identity.

This exists. We refine the choice of F' from the previous construction. Indeed, we define
F piecewise on each segment of the boundary. We define it on {1/2} x [—1/2,1/2], the
definition on the remaining components is clear. Let ¢ : (—1,1) — [-1/2,1/2] be any C*°
function such that
(a) ¢'(t) >0 when t € (—1/2,1/2),
(b) ¥®(t) =0 for all k > 1 when [¢| > 1/2,
(c) ¥(—1/2) = —1/2, and
(d) v(1/2) =1/2.

Notice that 1) must be invertible on [—1/2,1/2] (since it is increasing), which we use
in the following (we denote (¢|[_1/271/2])_1 by ¢! for simplicity of notation). Give 9I?
the smooth structure, where the charts are given locally by maps ¢(1/2,t) = ¥~1(t) (and
similarly for other edges of the square). At the corner point (—1/2,—1/2), we define

(s t=—-1/2

plst) = { -1 ! Epl(t) 5= —1//2
on the set ({—1/2} x [-1/2,1/2)) U ([-1/2,1/2) x {—1/2}). Notice that the image
of [-1/2,1/2) under ¢! is [-1/2,1/2), and the image under —1 — ™1 is (=3/2,-1/2].
Furthermore, the map is well defined at (—1/2, —1/2), since —1/2 = —1—(—1/2). Hence ¢p~*
is a homeomorphism from the union of the edges meeting at (—1/2,—1/2) and (—3/2,1/2).
Such a family clearly forms a smooth atlas when using similar definitions at other corner
points, since the intersections consist only of open intervals, and transition maps are given
by compositions of 1, =1 and the inversion of the interval, I(z) = —x, which are C* on

the interiors.
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Then since 1 is C°°, on the interior of the edges, the inclusion is clearly C*°. At the

corner point, observe that the inclusion is determined by 1, and since all derivatives vanish,
the inclusion is C*°.
This does not exist. Assume that the inclusion of 912 is an immersion. Choose a local
chart centered at a corner point. Without loss of generality, assume that U is a neighborhood
of (1/2,1/2) in 0I% and ¢ : U — R is a chart such that p(1/2,1/2) = 0. Then ¢ is
invertible, and since the inclusion is an immersion, o~! : (—¢,¢) — R? is C°°. Without
loss of generality, assume that negative values of ¢ are taken to the horizontal edge near
(1/2,1/2) and positive values are taken to the vertical edge. Then for each ¢ > § > 0, by
the Mean Value Theorem, there exists some ¢ € (0, §) such that (¢~!)/(¢) is a vertical vector
(ie, has 0 as its first component). Similarly, for every —e < d < 0, there exists some t € (0, §)
such that (p~1)(¢) is a horizontal vector (ie, has 0 as its second component). Therefore,
(~1)(0) must have zero in both components, since it is a limit of such vectors. Therefore,
(@=1)(0) = 0, which contradicts that the inclusion is an immersion.



Linear algebra and vector calculus review

Problem 7. Let F : R® — R" be a diffeomorphism, and assume that there exists a v € R" such

that v is an eigenvector of DF(x) with real eigenvalue for every z € R™. Show that the lines
L(z) = {z +tv: t € R} are equivariant: F(L(x)) = L(F(z)).

Solution. Since F is a diffeomorphism and DF(p)~t = DF~Y(F(p)), it follows that if v is an
eigenvector with eigenvalue \(p) for every matrix DF(p), the it is also an eigenvector of DF~!(q) of
eigenvalue A\~! for every ¢ € R¥. Notice that 0 cannot be an eigenvalue since DF must be invertible.

Hence it suffices to show that F'(L(z)) C L(F(x)), as the opposite inclusion will follow from the
analysis on 1. Let v, : R — R™ be the map 7,(t) = x +tv, so that L(x) is the image of 7,. Then
F(L(x)) is the image of F'o~y. But the derivative of F o~y at t is

DF(y(t))y'(t) = DF(y(t))v = A(v(t))v,

which is a multiple of v by assumption. Therefore,

F(y(t)) = F(z) + / DF(y(s))(s) ds = F(x) + / A((s)) ds - .
Hence, F(L(x)) C L(F(x)), as claimed. O

Problem 8. Let V and W be (real) finite-dimensional vector spaces and End(V, W) be the set of
linear transformations from V' to W.

(1) Show that End(V, W) is a real vector space.

(2) With fixed bases for V' and W, find an isomorphism between End(V, W) and M (m,n), the
set of m x n matrices, where m = dim(V) and n = dim(W).

(3) If Vo C V is a subspace of V, let Ann(Vy) C End(V, W) be the annihilator of V. That
is, the set of ¢ € End(V,W) such that ¢(v) = 0 for all v € Vj. Show that Ann(1}) is a
vector subspace of End(V, W), then find and prove a formula for dim(Ann(V;)) in terms of
dim(V), dim(W) and dim(Vp). [Hint: It might be useful to think about it as matrices using
the previous part|

(4) * Find a canonical isomorphism between V* ® W and End(V, W), and prove it is an iso-
morphism. Construct a projection 7 : V* @ W — V7 ® W such that Ann(Vj) = ker «, and
prove that it is a projection, and that the kernel is as described. Deduce the formula for
dim(Ann(Vp)) using , as well.

Solution.

(1) Let ¢,v € End(V,W). Then ¢ +1) is also a linear transformation, and hence in End(V, W).
Similarly, if ¢ € R, (cp)(v) = cp(v) is a linear transformation. Hence End(V, W) is a real
vector space.

(2) Let v1,...,v,, be a basis of V and wy, ..., w, be a basis of W. Then if ¢ € End(V, W), let
a;j be the wj-component of ¢(v;). Then A = (a;;) is an m X n-matrix, and the map ¢ — A
is a homomorphism. Furthermore, it is an isomorphism, since if A is the zero matrix, ¢ = 0,
as it vanishes on a basis. Furthermore, if A is any matrix, then one may define a linear
transformation via:

m n
go(tlvl +---+ tm’Um) = Z Z aijtiwj

i=1 j=1
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(3)

Observe that if ¢,? € Ann(Vp), then if v € Vy, (¢ + 9¥)(v) = p(v) + ¥(v) = 0. Similarly,
cp(v) = 0. Therefore, Ann(V}) is a vector subspace. Assume that dim(Vp) = k, and that
v1,...,v form a basis of V. Then a matrix A corresponds to an element of Ann(V}) if it
takes the following form:

0O ... 0 % ... =

0 ... 0 % ... =

where the block of 0’s is an k x n block. Therefore, the dimension of Ann(Vp) is (m—k)-n.
Given an element A @ w € V* @ W, let ¢y ,(v) = A(v)w. This gives a homomorphism
from V* ® W to End(V,W), since the map (A, w) +— @y, is bilinear. The map is an
isomorphism. Let 7 : V* @ W — Vi ® W be the restriction map, (¢ ® w) = (¢ly, @ w).
Then 7 is a surjective homomorphism, and it is clear that ker 7 = Ann(1}), since Ann(V})
are exactly the transformations which restrict to the trivial transformation on V. Hence

dim(Ann(Vp)) = dim(V* @ W) —dim(Vy @ W) =m-n —k-n = n(m — k), as clained.
O



