SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 1

SOLUTIONS

In the following problems, a "fake *n*-manifold" is a topological space M which is locally Euclidean. That is, for every point $p \in M$, there exists a neighborhood $U \subset M$ of p, an open set $V \subset \mathbb{R}^n$ and a homeomorphism $\varphi : U \to V$.

Problem 1. Let M be a connected topological n-manifold, and $C \subset M$ be a closed proper subset. Let M^f be the set

$$M^{f} = \left\{ (x, a) : x \in M, \text{ and } \begin{array}{l} a = 0, \quad x \notin C \\ a = \pm 1, \quad x \in C \end{array} \right\}$$

Define a topology on M^f as being generated by two types of open sets from derived from the topology on M: If $U \subset M$ is open, let

- $U^{\#} = \{(x, 0) : x \in U \setminus C\} \cup \{(x, 1) : x \in C \cap U\}$, and
- $U^{\flat} = \{(x,0) : x \in U \setminus C\} \cup \{(x,-1) : x \in C \cap U\}.$

Show that, with the topology generated by sets of the form U^{\sharp} and U^{\flat} , M^{f} is a fake *n*-manifold, but not a manifold. What happens if C = M?

Solution. We first claim that M^f is locally Euclidean. Fix $p^f = (p, \sigma) \in M^f$. Since M is an n-manifold, there exists some $U \subset M$ and some map $\varphi : U \to \mathbb{R}^n$ which is a homeomorphism onto its image.

Case: $p \notin C$. In this case $U_0 = U \setminus C$ still contains p, and $\varphi|_{U_0}$ is a homeomorphism onto its image, since it is the restriction of a homeomorphism. Therefore, $U_0 \times \{0\} \subset M^f$ is open and $\varphi^f(x,\sigma) = \varphi(x)$ is a homeomorphism onto its image, since $U_0^{\sharp} = U_0^{\flat}$ projects to U_0 .

Case: $p \in C$. In this case, $\sigma = \pm 1$. Without loss of generality consider $\sigma = 1$. With U as above, we claim that the set U^{\sharp} is naturally homeomorphic to U (which is itself homeomorphic to an open subset of \mathbb{R}^n). Indeed, define $g_{\sharp}: U \to U^{\sharp}$ by g(p) = (p, 1). Since the topology on U^{\sharp} is generated by sets of the form $V^{\sharp} \cap U^{\sharp}$ and $V^{\flat} \cap U^{\sharp}$, where $V \subset M$ is open, we must show that their projection to M is open. Indeed, the M-projection of $V^{\sharp} \cap U^{\sharp}$ is $V \cap U^{\sharp}$ and the M-projection of $V^{\flat} \cap U^{\sharp} = Q_{\sharp}(V) \subset U^{\sharp}$ is open. Since C is closed, this set is open. Conversely, if $V \subset U$ is open, then $V^{\sharp} = g_{\sharp}(V) \subset U^{\sharp}$ is open. Thus, we conclude that g_{\sharp} is a homeomorphism, and M^{f} is locally Euclidean.

Finally, we claim that M^f is not Hausdorff. Indeed, pick any $p \in C$ such that every neighborhood U of p is not contained in C. Such a point must exist, otherwise every point of C is an interior point, and C is both open and closed. Since M is connected, C would be trivial or empty, which violates that it is proper. Now, with such a p in hand, notice that $(p, 1), (p, -1) \in M^f$ are points, and any neighborhood of (p, 1) must be of the form U_1^{\sharp} , where U_1 is a neighborhood of p, while any neighborhood of (p, -1) must be form U_2^{\flat} , where U_2 is a neighborhood of p. Then $U_1 \cap U_2$ is a neighborhood of p, and by choice of $p, U_1 \cap U_2 \cap (M \setminus C) \neq \emptyset$. Therefore, $U_1^{\sharp} \cap U_2^{\flat}$ contains $(U_1 \cap U_2 \cap (M \setminus C)) \times \{0\}$, which is nonempty. Therefore, M^f is not Hausdorff. Note that if C = M, then M^{\flat} is exactly $M \times \{-1, 1\}$, which is a manifold.

Problem 2. Give an example of a Hausdorff fake *n*-manifold which is not a manifold (and justify why it is not a manifold).

Solution. Let S be any set of uncountable cardinality, and give it the discrete topology. Then $M^{\#} = \mathbb{R} \times S$ is locally Euclidean (it is locally homeomorphic to \mathbb{R} . However, $\{0\} \times S$ is exactly S with the discrete topology, which does not have a countable basis. Therefore, $M^{\#}$ is not a manifold, since it is not second countable.

Problem 3. Show that $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ has a canonical smooth *n*-manifold structure by explicitly finding a smooth atlas and showing the atlas is smooth.

Solution. We use the stereographic projections to construct our charts. Let $\varphi_1(x_1, \ldots, x_{n+1}) = \frac{1}{1-x_{n+1}}(2x_1, \ldots, 2x_n)$ be defined from $S^n \setminus \{(0, \ldots, 0, 1)\}$ to \mathbb{R}^n . We claim that φ_1 is a homeomorphism onto its image. Indeed, its inverse can be computed explicitly, and is the rational function

$$\varphi_1^{-1}(y_1,\ldots,y_n) = \frac{1}{4+\sum y_i^2} \left(4y_1,\ldots,4y_n,-4+\sum y_i^2\right)$$

Similarly, we let $\varphi_2(x_1, \ldots, x_{n+1}) = \frac{1}{1+x_{n+1}}(2x_1, \ldots, 2x_n)$ be defined on $S^n \setminus \{(0, \ldots, 0, -1)\}$. Then

$$\varphi_2^{-1}(y_1,\ldots,y_n) = \frac{1}{4+\sum y_i^2} \left(4y_1,\ldots,4y_n,4-\sum y_i^2\right)$$

To show that φ_1 and φ_2 form a smooth atlas, we must confirm that $\varphi_1 \circ \varphi_2^{-1}$ is a diffeomorphism from $\mathbb{R}^n \setminus \{0\}$ to itself. Indeed,

$$\varphi_1 \circ \varphi_2^{-1}(y_1, \dots, y_n) = \frac{4 + \sum y_i^2}{4 \sum y_i^2}(y_1, \dots, y_n),$$

which is indeed a well-defined diffeomorphism from $\mathbb{R}^n \setminus \{0\}$ to itself.

Problem 4. Show that if M is a smooth m-manifold and N is a smooth n-manifold, then $M \times N$ has a canonical smooth (m + n)-manifold structure.

Solution. First, notice that if M and N are both Hausdorff and second countable, then so is $M \times N$. We now construct a smooth atlas on $M \times N$. Indeed, fix atlases \mathcal{A}_M for M and \mathcal{A}_N for N, respectively. Then if $(U, \varphi) \in \mathcal{A}_M$ and $(V, \psi) \in \mathcal{A}_N$, let $\varphi \times \psi : U \times V \to \mathbb{R}^{n+m}$ be defined by $\varphi \times \psi(x, y) = (\varphi(x), \psi(y))$.

We claim that the collection of pairs $(\varphi \times \psi, U \times V) \in \mathcal{A}_M \times \mathcal{A}_N$ is a smooth atlas. Indeed, notice that $U_1 \times V_1$ and $U_2 \times V_2$ intersect if and only if $U_1 \cap U_2 \neq \emptyset$ and $V_1 \times V_2 \neq \emptyset$. Furthermore, the corresponding maps satisfy:

$$(\varphi_2 \times \psi_2) \circ (\varphi_1 \times \psi_1)^{-1} = (\varphi_2 \circ \varphi_1^{-1}) \times (\psi_2 \circ \psi_1^{-1}),$$

which is verified directly by computation. Since the maps repsect the decomposition into direct products, it is C^{∞} since each component is C^{∞} . Therefore, we have constructed a smooth atlas. \Box

Problem 5. Show that $\mathbb{R}^2 \setminus \{0\}$, $A = \{x \in \mathbb{R}^2 : 1 < ||x|| < 2\}$ and $S^1 \times (0, 1)$ are all diffeomorphic with their standard smooth structures.

Solution. We construct a diffeomorphism between $S^1 \times (0,1)$ and the first two manifolds. First, define $F: S^1 \times (0,1) \to \mathbb{R}^2 \setminus \{0\}$ as

$$F(x,t) = \frac{tx}{1-t}$$

Then F is invertible and $F^{-1}(y) = (y/||y||, ||y||/(1+||y||))$. Since $||\cdot||$ is differentiable except at y = 0, F is a diffeomorphism between $S^1 \times (0, 1)$ and $\mathbb{R}^2 \setminus \{0\}$.

Now we construct a diffeomorphism between $S^1 \times (0, 1)$ and A. Let G(x, t) = (t+1)x. It is clear that G is smooth and that $G^{-1}(y) = (y/||y||, ||y|| - 1)$. Therefore, G is a diffeomorphism \Box

Problem 6. Let X denote the boundary of the unit square in \mathbb{R}^2 . Prove or find a counterexample:

- (1) X is a topological 1-manifold.
- (2) There exists a smooth structure on X.
- (3) There exists a smooth structure on X such that the inclusion of X into \mathbb{R}^2 is C^{∞} .
- (4) There exists a smooth structure on X such that the inclusion of X into \mathbb{R}^2 is an immersion.

Solution.

(1) and (2) **These exist.** Choose any homeomorphism between ∂I^2 and S^1 . For instance, define $F : \partial I^2 \to S^1$ by $\varphi(x) = x/||x||$ (here, we take I = [-1/2, 1/2] rather than [0, 1]). If $U \subset S^1$ and $\varphi : U \to \mathbb{R}$ is a smooth chart for S^1 , let $V = F^{-1}(U)$ and $\tilde{\varphi}(x) = \varphi \circ F$. We claim that the collection of charts $\tilde{\varphi}$, where φ is a smooth chart for S^1 is a smooth structure. Indeed, the transition functions are exactly

$$\tilde{\varphi_1} \circ \tilde{\varphi_2}^{-1} = (\varphi_1 \circ F) \circ (\varphi_2 \circ F)^{-1} = \varphi_1 \circ \varphi_2^{-1}.$$

These are clearly C^{∞} , so we have constructed a smooth structure. Furthermore, the map F is a diffeomorphism when using these charts, since when using the charts φ and $\tilde{\varphi}$ on S^1 and ∂I^2 , respectively, the map F is represented by the identity.

- (3) **This exists.** We refine the choice of F from the previous construction. Indeed, we define F piecewise on each segment of the boundary. We define it on $\{1/2\} \times [-1/2, 1/2]$, the definition on the remaining components is clear. Let $\psi : (-1, 1) \rightarrow [-1/2, 1/2]$ be any C^{∞} function such that
 - (a) $\psi'(t) > 0$ when $t \in (-1/2, 1/2)$,
 - (b) $\psi^{(k)}(t) = 0$ for all $k \ge 1$ when $|t| \ge 1/2$,
 - (c) $\psi(-1/2) = -1/2$, and
 - (d) $\psi(1/2) = 1/2$.

Notice that ψ must be invertible on [-1/2, 1/2] (since it is increasing), which we use in the following (we denote $(\psi|_{[-1/2,1/2]})^{-1}$ by ψ^{-1} for simplicity of notation). Give ∂I^2 the smooth structure, where the charts are given locally by maps $\varphi(1/2,t) = \psi^{-1}(t)$ (and similarly for other edges of the square). At the corner point (-1/2, -1/2), we define

$$\varphi(s,t) = \begin{cases} \psi^{-1}(s) & t = -1/2\\ -1 - \psi^{-1}(t) & s = -1/2 \end{cases}$$

on the set $(\{-1/2\} \times [-1/2, 1/2)) \cup ([-1/2, 1/2) \times \{-1/2\})$. Notice that the image of [-1/2, 1/2) under ψ^{-1} is [-1/2, 1/2), and the image under $-1 - \psi^{-1}$ is (-3/2, -1/2]. Furthermore, the map is well defined at (-1/2, -1/2), since -1/2 = -1 - (-1/2). Hence ψ^{-1} is a homeomorphism from the union of the edges meeting at (-1/2, -1/2) and (-3/2, 1/2). Such a family clearly forms a smooth atlas when using similar definitions at other corner points, since the intersections consist only of open intervals, and transition maps are given by compositions of ψ , ψ^{-1} and the inversion of the interval, I(x) = -x, which are C^{∞} on the interiors. Then since ψ is C^{∞} , on the interior of the edges, the inclusion is clearly C^{∞} . At the corner point, observe that the inclusion is determined by ψ , and since all derivatives vanish, the inclusion is C^{∞} .

(4) This does not exist. Assume that the inclusion of ∂I^2 is an immersion. Choose a local chart centered at a corner point. Without loss of generality, assume that U is a neighborhood of (1/2, 1/2) in ∂I^2 , and $\varphi : U \to \mathbb{R}$ is a chart such that $\varphi(1/2, 1/2) = 0$. Then φ is invertible, and since the inclusion is an immersion, $\varphi^{-1} : (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ is C^{∞} . Without loss of generality, assume that negative values of t are taken to the horizontal edge near (1/2, 1/2) and positive values are taken to the vertical edge. Then for each $\varepsilon > \delta > 0$, by the Mean Value Theorem, there exists some $t \in (0, \delta)$ such that $(\varphi^{-1})'(t)$ is a vertical vector (ie, has 0 as its first component). Similarly, for every $-\varepsilon < \delta < 0$, there exists some $t \in (0, \delta)$ such that $(\varphi^{-1})'(t)$ is a horizontal vector (ie, has 0 as its second component). Therefore, $(\varphi^{-1})'(0)$ must have zero in both components, since it is a limit of such vectors. Therefore, $(\varphi^{-1})'(0) = 0$, which contradicts that the inclusion is an immersion.

Linear algebra and vector calculus review

Problem 7. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism, and assume that there exists a $v \in \mathbb{R}^n$ such that v is an eigenvector of DF(x) with real eigenvalue for every $x \in \mathbb{R}^n$. Show that the lines $L(x) = \{x + tv : t \in \mathbb{R}\}$ are *equivariant*: F(L(x)) = L(F(x)).

Solution. Since F is a diffeomorphism and $DF(p)^{-1} = DF^{-1}(F(p))$, it follows that if v is an eigenvector with eigenvalue $\lambda(p)$ for every matrix DF(p), the it is also an eigenvector of $DF^{-1}(q)$ of eigenvalue λ^{-1} for every $q \in \mathbb{R}^k$. Notice that 0 cannot be an eigenvalue since DF must be invertible.

Hence it suffices to show that $F(L(x)) \subset L(F(x))$, as the opposite inclusion will follow from the analysis on F^{-1} . Let $\gamma_x : \mathbb{R} \to \mathbb{R}^n$ be the map $\gamma_x(t) = x + tv$, so that L(x) is the image of γ_x . Then F(L(x)) is the image of $F \circ \gamma$. But the derivative of $F \circ \gamma$ at t is

$$DF(\gamma(t))\gamma'(t) = DF(\gamma(t))v = \lambda(\gamma(t))v,$$

which is a multiple of v by assumption. Therefore,

$$F(\gamma(t)) = F(x) + \int_0^t DF(\gamma(s))\gamma'(s) \, ds = F(x) + \int_0^t \lambda(\gamma(s)) \, ds \cdot v.$$

Hence, $F(L(x)) \subset L(F(x))$, as claimed.

Problem 8. Let V and W be (real) finite-dimensional vector spaces and End(V, W) be the set of linear transformations from V to W.

- (1) Show that End(V, W) is a real vector space.
- (2) With fixed bases for V and W, find an isomorphism between $\operatorname{End}(V, W)$ and M(m, n), the set of $m \times n$ matrices, where $m = \dim(V)$ and $n = \dim(W)$.
- (3) If $V_0 \subset V$ is a subspace of V, let $\operatorname{Ann}(V_0) \subset \operatorname{End}(V, W)$ be the annihilator of V_0 . That is, the set of $\varphi \in \operatorname{End}(V, W)$ such that $\varphi(v) = 0$ for all $v \in V_0$. Show that $\operatorname{Ann}(V_0)$ is a vector subspace of $\operatorname{End}(V, W)$, then find and prove a formula for $\dim(\operatorname{Ann}(V_0))$ in terms of $\dim(V)$, $\dim(W)$ and $\dim(V_0)$. [Hint: It might be useful to think about it as matrices using the previous part]
- (4) * Find a canonical isomorphism between $V^* \otimes W$ and $\operatorname{End}(V, W)$, and prove it is an isomorphism. Construct a projection $\pi : V^* \otimes W \to V_0^* \otimes W$ such that $\operatorname{Ann}(V_0) = \ker \pi$, and prove that it is a projection, and that the kernel is as described. Deduce the formula for $\dim(\operatorname{Ann}(V_0))$ using π , as well.

Solution.

- (1) Let $\varphi, \psi \in \text{End}(V, W)$. Then $\varphi + \psi$ is also a linear transformation, and hence in End(V, W). Similarly, if $c \in \mathbb{R}$, $(c\varphi)(v) = c\varphi(v)$ is a linear transformation. Hence End(V, W) is a real vector space.
- (2) Let v_1, \ldots, v_m be a basis of V and w_1, \ldots, w_n be a basis of W. Then if $\varphi \in \text{End}(V, W)$, let a_{ij} be the w_j -component of $\varphi(v_i)$. Then $A = (a_{ij})$ is an $m \times n$ -matrix, and the map $\varphi \mapsto A$ is a homomorphism. Furthermore, it is an isomorphism, since if A is the zero matrix, $\varphi \equiv 0$, as it vanishes on a basis. Furthermore, if A is any matrix, then one may define a linear transformation via:

$$\varphi(t_1v_1 + \dots + t_mv_m) = \sum_{i=1}^m \sum_{j=1}^n a_{ij}t_iw_j$$

(3) Observe that if $\varphi, \psi \in \operatorname{Ann}(V_0)$, then if $v \in V_0$, $(\varphi + \psi)(v) = \varphi(v) + \psi(v) = 0$. Similarly, $c\varphi(v) = 0$. Therefore, $\operatorname{Ann}(V_0)$ is a vector subspace. Assume that $\dim(V_0) = k$, and that v_1, \ldots, v_k form a basis of V_0 . Then a matrix A corresponds to an element of $\operatorname{Ann}(V_0)$ if it takes the following form:

$$\begin{pmatrix} 0 & \dots & 0 & * & \dots & * \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & * & \dots & * \end{pmatrix}$$

where the block of 0's is an $k \times n$ block. Therefore, the dimension of $\operatorname{Ann}(V_0)$ is $(m-k) \cdot n$.

(4) Given an element $\lambda \otimes w \in V^* \otimes W$, let $\varphi_{\lambda,w}(v) = \lambda(v)w$. This gives a homomorphism from $V^* \otimes W$ to $\operatorname{End}(V, W)$, since the map $(\lambda, w) \mapsto \varphi_{\lambda,w}$ is bilinear. The map is an isomorphism. Let $\pi : V^* \otimes W \to V_0^* \otimes W$ be the restriction map, $\pi(\varphi \otimes w) = (\varphi|_{V_0} \otimes w)$. Then π is a surjective homomorphism, and it is clear that ker $\pi = \operatorname{Ann}(V_0)$, since $\operatorname{Ann}(V_0)$ are exactly the transformations which restrict to the trivial transformation on V_0 . Hence $\dim(\operatorname{Ann}(V_0)) = \dim(V^* \otimes W) - \dim(V_0^* \otimes W) = m \cdot n - k \cdot n = n(m - k)$, as claimed.