## SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 1

## SOLUTIONS

In the following problems, a "fake $n$-manifold" is a topological space $M$ which is locally Euclidean. That is, for every point $p \in M$, there exists a neighborhood $U \subset M$ of $p$, an open set $V \subset \mathbb{R}^{n}$ and a homeomorphism $\varphi: U \rightarrow V$.

Problem 1. Let $M$ be a connected topological $n$-manifold, and $C \subset M$ be a closed proper subset. Let $M^{f}$ be the set

$$
M^{f}=\left\{(x, a): x \in M, \text { and } \begin{array}{ll}
a=0, & x \notin C \\
a= \pm 1, & x \in C
\end{array}\right\}
$$

Define a topology on $M^{f}$ as being generated by two types of open sets from derived from the topology on $M$ : If $U \subset M$ is open, let

- $U^{\#}=\{(x, 0): x \in U \backslash C\} \cup\{(x, 1): x \in C \cap U\}$, and
- $U^{b}=\{(x, 0): x \in U \backslash C\} \cup\{(x,-1): x \in C \cap U\}$.

Show that, with the topology generated by sets of the form $U^{\sharp}$ and $U^{b}, M^{f}$ is a fake $n$-manifold, but not a manifold. What happens if $C=M$ ?

Solution. We first claim that $M^{f}$ is locally Euclidean. Fix $p^{f}=(p, \sigma) \in M^{f}$. Since $M$ is an $n$-manifold, there exists some $U \subset M$ and some map $\varphi: U \rightarrow \mathbb{R}^{n}$ which is a homeomorphism onto its image.
Case: $p \notin C$. In this case $U_{0}=U \backslash C$ still contains $p$, and $\left.\varphi\right|_{U_{0}}$ is a homeomorphism onto its image, since it is the restriction of a homeomorphism. Therefore, $U_{0} \times\{0\} \subset M^{f}$ is open and $\varphi^{f}(x, \sigma)=\varphi(x)$ is a homeomorphism onto its image, since $U_{0}^{\sharp}=U_{0}^{b}$ projects to $U_{0}$.
Case: $p \in C$. In this case, $\sigma= \pm 1$. Without loss of generality consider $\sigma=1$. With $U$ as above, we claim that the set $U^{\sharp}$ is naturally homeomorphic to $U$ (which is itself homeomorphic to an open subset of $\mathbb{R}^{n}$ ). Indeed, define $g_{\sharp}: U \rightarrow U^{\sharp}$ by $g(p)=(p, 1)$. Since the topology on $U^{\sharp}$ is generated by sets of the form $V^{\sharp} \cap U^{\sharp}$ and $V^{b} \cap U^{\sharp}$, where $V \subset M$ is open, we must show that their projection to $M$ is open. Indeed, the $M$-projection of $V^{\sharp} \cap U^{\sharp}$ is $V \cap U$, and the $M$-projection of $V^{b} \cap U^{\sharp}+$ is $(V \backslash C) \cap U$. Since $C$ is closed, this set is open. Conversely, if $V \subset U$ is open, then $V^{\sharp}=g_{\sharp}(V) \subset U^{\sharp}$ is open. Thus, we conclude that $g_{\sharp}$ is a homeomorphism, and $M^{f}$ is locally Euclidean.

Finally, we claim that $M^{f}$ is not Hausdorff. Indeed, pick any $p \in C$ such that every neigbhorhood $U$ of $p$ is not contained in $C$. Such a point must exist, otherwise every point of $C$ is an interior point, and $C$ is both open and closed. Since $M$ is connected, $C$ would be trivial or empty, which violates that it is proper. Now, with such a $p$ in hand, notice that $(p, 1),(p,-1) \in M^{f}$ are points, and any neighborhood of $(p, 1)$ must be of the form $U_{1}^{\sharp}$, where $U_{1}$ is a neighborhood of $p$, while any neighborhood of $(p,-1)$ must be form $U_{2}^{b}$, where $U_{2}$ is a neighborhood of $p$. Then $U_{1} \cap U_{2}$ is a neighborhood of $p$, and by choice of $p, U_{1} \cap U_{2} \cap(M \backslash C) \neq \emptyset$. Therefore, $U_{1}^{\sharp} \cap U_{2}^{b}$ contains $\left(U_{1} \cap U_{2} \cap(M \backslash C)\right) \times\{0\}$, which is nonempty. Therefore, $M^{f}$ is not Hausdorff. Note that if $C=M$, then $M^{b}$ is exactly $M \times\{-1,1\}$, which is a manifold.

Problem 2. Give an example of a Hausdorff fake $n$-manifold which is not a manifold (and justify why it is not a manfiold).

Solution. Let $S$ be any set of uncountable cardinality, and give it the discrete topology. Then $M^{\#}=\mathbb{R} \times S$ is locally Euclidean (it is locally homeomorphic to $\mathbb{R}$. However, $\{0\} \times S$ is exactly $S$ with the discrete topology, which does not have a countable basis. Therefore, $M^{\#}$ is not a manifold, since it is not second countable.

Problem 3. Show that $S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$ has a canonical smooth $n$-manifold structure by explicitly finding a smooth atlas and showing the atlas is smooth.

Solution. We use the stereographic projections to construct our charts. Let $\varphi_{1}\left(x_{1}, \ldots, x_{n+1}\right)=$ $\frac{1}{1-x_{n+1}}\left(2 x_{1}, \ldots, 2 x_{n}\right)$ be defined from $S^{n} \backslash\{(0, \ldots, 0,1)\}$ to $\mathbb{R}^{n}$. We claim that $\varphi_{1}$ is a homeomorphism onto its image. Indeed, its inverse can be computed explicitly, and is the rational function

$$
\varphi_{1}^{-1}\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{4+\sum y_{i}^{2}}\left(4 y_{1}, \ldots, 4 y_{n},-4+\sum y_{i}^{2}\right)
$$

Similarly, we let $\varphi_{2}\left(x_{1}, \ldots, x_{n+1}\right)=\frac{1}{1+x_{n+1}}\left(2 x_{1}, \ldots, 2 x_{n}\right)$ be defined on $S^{n} \backslash\{(0, \ldots, 0,-1)\}$. Then

$$
\varphi_{2}^{-1}\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{4+\sum y_{i}^{2}}\left(4 y_{1}, \ldots, 4 y_{n}, 4-\sum y_{i}^{2}\right)
$$

To show that $\varphi_{1}$ and $\varphi_{2}$ form a smooth atlas, we must confirm that $\varphi_{1} \circ \varphi_{2}^{-1}$ is a diffeomorphism from $\mathbb{R}^{n} \backslash\{0\}$ to itself. Indeed,

$$
\varphi_{1} \circ \varphi_{2}^{-1}\left(y_{1}, \ldots, y_{n}\right)=\frac{4+\sum y_{i}^{2}}{4 \sum y_{i}^{2}}\left(y_{1}, \ldots, y_{n}\right)
$$

which is indeed a well-defined diffeomorphism from $\mathbb{R}^{n} \backslash\{0\}$ to itself.
Problem 4. Show that if $M$ is a smooth $m$-manifold and $N$ is a smooth $n$-manifold, then $M \times N$ has a canonical smooth $(m+n)$-manifold structure.

Solution. First, notice that if $M$ and $N$ are both Hausdorff and second countable, then so is $M \times N$. We now construct a smooth atlas on $M \times N$. Indeed, fix atlases $\mathcal{A}_{M}$ for $M$ and $\mathcal{A}_{N}$ for $N$, respectively. Then if $(U, \varphi) \in \mathcal{A}_{M}$ and $(V, \psi) \in \mathcal{A}_{N}$, let $\varphi \times \psi: U \times V \rightarrow \mathbb{R}^{n+m}$ be defined by $\varphi \times \psi(x, y)=(\varphi(x), \psi(y))$.

We claim that the collection of pairs $(\varphi \times \psi, U \times V) \in \mathcal{A}_{M} \times \mathcal{A}_{N}$ is a smooth atlas. Indeed, notice that $U_{1} \times V_{1}$ and $U_{2} \times V_{2}$ intersect if and only if $U_{1} \cap U_{2} \neq \emptyset$ and $V_{1} \times V_{2} \neq \emptyset$. Furthermore, the corresponding maps satisfy:

$$
\left(\varphi_{2} \times \psi_{2}\right) \circ\left(\varphi_{1} \times \psi_{1}\right)^{-1}=\left(\varphi_{2} \circ \varphi_{1}^{-1}\right) \times\left(\psi_{2} \circ \psi_{1}^{-1}\right)
$$

which is verified directly by computation. Since the maps repsect the decomposition into direct products, it is $C^{\infty}$ since each component is $C^{\infty}$. Therefore, we have constructed a smooth atlas.

Problem 5. Show that $\mathbb{R}^{2} \backslash\{0\}, A=\left\{x \in \mathbb{R}^{2}: 1<\|x\|<2\right\}$ and $S^{1} \times(0,1)$ are all diffeomorphic with their standard smooth structures.

Solution. We construct a diffeomorphism between $S^{1} \times(0,1)$ and the first two manifolds. First, define $F: S^{1} \times(0,1) \rightarrow \mathbb{R}^{2} \backslash\{0\}$ as

$$
F(x, t)=\frac{t x}{1-t}
$$

Then $F$ is invertible and $F^{-1}(y)=(y /\|y\|,\|y\| /(1+\|y\|))$. Since $\|\cdot\|$ is differentiable except at $y=0, F$ is a diffeomorphism between $S^{1} \times(0,1)$ and $\mathbb{R}^{2} \backslash\{0\}$.

Now we construct a diffeomorphism between $S^{1} \times(0,1)$ and $A$. Let $G(x, t)=(t+1) x$. It is clear that $G$ is smooth and that $G^{-1}(y)=(y /\|y\|,\|y\|-1)$. Therefore, $G$ is a diffeomorphism
Problem 6. Let $X$ denote the boundary of the unit square in $\mathbb{R}^{2}$. Prove or find a counterexample:
(1) $X$ is a topological 1-manifold.
(2) There exists a smooth structure on $X$.
(3) There exists a smooth structure on $X$ such that the inclusion of $X$ into $\mathbb{R}^{2}$ is $C^{\infty}$.
(4) There exists a smooth structure on $X$ such that the inclusion of $X$ into $\mathbb{R}^{2}$ is an immersion.

## Solution.

(1) and (2) These exist. Choose any homeomorphism between $\partial I^{2}$ and $S^{1}$. For instance, define $F: \partial I^{2} \rightarrow S^{1}$ by $\varphi(x)=x /\|x\|$ (here, we take $I=[-1 / 2,1 / 2]$ rather than $[0,1]$ ). If $U \subset S^{1}$ and $\varphi: U \rightarrow \mathbb{R}$ is a smooth chart for $S^{1}$, let $V=F^{-1}(U)$ and $\tilde{\varphi}(x)=\varphi \circ F$. We claim that the collection of charts $\tilde{\varphi}$, where $\varphi$ is a smooth chart for $S^{1}$ is a smooth structure. Indeed, the transition functions are exactly

$$
\tilde{\varphi_{1}} \circ{\tilde{\varphi_{2}}}^{-1}=\left(\varphi_{1} \circ F\right) \circ\left(\varphi_{2} \circ F\right)^{-1}=\varphi_{1} \circ \varphi_{2}^{-1}
$$

These are clearly $C^{\infty}$, so we have constructed a smooth structure. Furthermore, the map $F$ is a diffeomorphism when using these charts, since when using the charts $\varphi$ and $\tilde{\varphi}$ on $S^{1}$ and $\partial I^{2}$, respectively, the map $F$ is represented by the identity.
(3) This exists. We refine the choice of $F$ from the previous construction. Indeed, we define $F$ piecewise on each segment of the boundary. We define it on $\{1 / 2\} \times[-1 / 2,1 / 2]$, the definition on the remaining components is clear. Let $\psi:(-1,1) \rightarrow[-1 / 2,1 / 2]$ be any $C^{\infty}$ function such that
(a) $\psi^{\prime}(t)>0$ when $t \in(-1 / 2,1 / 2)$,
(b) $\psi^{(k)}(t)=0$ for all $k \geq 1$ when $|t| \geq 1 / 2$,
(c) $\psi(-1 / 2)=-1 / 2$, and
(d) $\psi(1 / 2)=1 / 2$.

Notice that $\psi$ must be invertible on $[-1 / 2,1 / 2]$ (since it is increasing), which we use in the following (we denote $\left(\left.\psi\right|_{[-1 / 2,1 / 2]}\right)^{-1}$ by $\psi^{-1}$ for simplicity of notation). Give $\partial I^{2}$ the smooth structure, where the charts are given locally by maps $\varphi(1 / 2, t)=\psi^{-1}(t)$ (and similarly for other edges of the square). At the corner point $(-1 / 2,-1 / 2)$, we define

$$
\varphi(s, t)= \begin{cases}\psi^{-1}(s) & t=-1 / 2 \\ -1-\psi^{-1}(t) & s=-1 / 2\end{cases}
$$

on the set $(\{-1 / 2\} \times[-1 / 2,1 / 2)) \cup([-1 / 2,1 / 2) \times\{-1 / 2\})$. Notice that the image of $[-1 / 2,1 / 2)$ under $\psi^{-1}$ is $[-1 / 2,1 / 2)$, and the image under $-1-\psi^{-1}$ is $(-3 / 2,-1 / 2]$. Furthermore, the map is well defined at $(-1 / 2,-1 / 2)$, since $-1 / 2=-1-(-1 / 2)$. Hence $\psi^{-1}$ is a homeomorphism from the union of the edges meeting at $(-1 / 2,-1 / 2)$ and $(-3 / 2,1 / 2)$. Such a family clearly forms a smooth atlas when using similar definitions at other corner points, since the intersections consist only of open intervals, and transition maps are given by compositions of $\psi, \psi^{-1}$ and the inversion of the interval, $I(x)=-x$, which are $C^{\infty}$ on the interiors.

Then since $\psi$ is $C^{\infty}$, on the interior of the edges, the inclusion is clearly $C^{\infty}$. At the corner point, observe that the inclusion is determined by $\psi$, and since all derivatives vanish, the inclusion is $C^{\infty}$.
(4) This does not exist. Assume that the inclusion of $\partial I^{2}$ is an immersion. Choose a local chart centered at a corner point. Without loss of generality, assume that $U$ is a neighborhood of $(1 / 2,1 / 2)$ in $\partial I^{2}$, and $\varphi: U \rightarrow \mathbb{R}$ is a chart such that $\varphi(1 / 2,1 / 2)=0$. Then $\varphi$ is invertible, and since the inclusion is an immersion, $\varphi^{-1}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{2}$ is $C^{\infty}$. Without loss of generality, assume that negative values of $t$ are taken to the horizontal edge near $(1 / 2,1 / 2)$ and positive values are taken to the vertical edge. Then for each $\varepsilon>\delta>0$, by the Mean Value Theorem, there exists some $t \in(0, \delta)$ such that $\left(\varphi^{-1}\right)^{\prime}(t)$ is a vertical vector (ie, has 0 as its first component). Similarly, for every $-\varepsilon<\delta<0$, there exists some $t \in(0, \delta)$ such that $\left(\varphi^{-1}\right)^{\prime}(t)$ is a horizontal vector (ie, has 0 as its second component). Therefore, $\left(\varphi^{-1}\right)^{\prime}(0)$ must have zero in both components, since it is a limit of such vectors. Therefore, $\left(\varphi^{-1}\right)^{\prime}(0)=0$, which contradicts that the inclusion is an immersion.

## Linear algebra and vector calculus review

Problem 7. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism, and assume that there exists a $v \in \mathbb{R}^{n}$ such that $v$ is an eigenvector of $D F(x)$ with real eigenvalue for every $x \in \mathbb{R}^{n}$. Show that the lines $L(x)=\{x+t v: t \in \mathbb{R}\}$ are equivariant: $F(L(x))=L(F(x))$.

Solution. Since $F$ is a diffeomorphism and $D F(p)^{-1}=D F^{-1}(F(p))$, it follows that if $v$ is an eigenvector with eigenvalue $\lambda(p)$ for every matrix $D F(p)$, the it is also an eigenvector of $D F^{-1}(q)$ of eigenvalue $\lambda^{-1}$ for every $q \in \mathbb{R}^{k}$. Notice that 0 cannot be an eigenvalue since $D F$ must be invertible.

Hence it suffices to show that $F(L(x)) \subset L(F(x))$, as the opposite inclusion will follow from the analysis on $F^{-1}$. Let $\gamma_{x}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be the map $\gamma_{x}(t)=x+t v$, so that $L(x)$ is the image of $\gamma_{x}$. Then $F(L(x))$ is the image of $F \circ \gamma$. But the derivative of $F \circ \gamma$ at $t$ is

$$
D F(\gamma(t)) \gamma^{\prime}(t)=D F(\gamma(t)) v=\lambda(\gamma(t)) v
$$

which is a multiple of $v$ by assumption. Therefore,

$$
F(\gamma(t))=F(x)+\int_{0}^{t} D F(\gamma(s)) \gamma^{\prime}(s) d s=F(x)+\int_{0}^{t} \lambda(\gamma(s)) d s \cdot v
$$

Hence, $F(L(x)) \subset L(F(x))$, as claimed.
Problem 8. Let $V$ and $W$ be (real) finite-dimensional vector spaces and $\operatorname{End}(V, W)$ be the set of linear transformations from $V$ to $W$.
(1) Show that $\operatorname{End}(V, W)$ is a real vector space.
(2) With fixed bases for $V$ and $W$, find an isomorphism between $\operatorname{End}(V, W)$ and $M(m, n)$, the set of $m \times n$ matrices, where $m=\operatorname{dim}(V)$ and $n=\operatorname{dim}(W)$.
(3) If $V_{0} \subset V$ is a subspace of $V$, let $\operatorname{Ann}\left(V_{0}\right) \subset \operatorname{End}(V, W)$ be the annihilator of $V_{0}$. That is, the set of $\varphi \in \operatorname{End}(V, W)$ such that $\varphi(v)=0$ for all $v \in V_{0}$. Show that $\operatorname{Ann}\left(V_{0}\right)$ is a vector subspace of $\operatorname{End}(V, W)$, then find and prove a formula for $\operatorname{dim}\left(\operatorname{Ann}\left(V_{0}\right)\right)$ in terms of $\operatorname{dim}(V), \operatorname{dim}(W)$ and $\operatorname{dim}\left(V_{0}\right)$. [Hint: It might be useful to think about it as matrices using the previous part]
(4) * Find a canonical isomorphism between $V^{*} \otimes W$ and $\operatorname{End}(V, W)$, and prove it is an isomorphism. Construct a projection $\pi: V^{*} \otimes W \rightarrow V_{0}^{*} \otimes W$ such that $\operatorname{Ann}\left(V_{0}\right)=\operatorname{ker} \pi$, and prove that it is a projection, and that the kernel is as described. Deduce the formula for $\operatorname{dim}\left(\operatorname{Ann}\left(V_{0}\right)\right)$ using $\pi$, as well.

Solution.
(1) Let $\varphi, \psi \in \operatorname{End}(V, W)$. Then $\varphi+\psi$ is also a linear transformation, and hence in $\operatorname{End}(V, W)$. Similarly, if $c \in \mathbb{R},(c \varphi)(v)=c \varphi(v)$ is a linear transformation. Hence $\operatorname{End}(V, W)$ is a real vector space.
(2) Let $v_{1}, \ldots, v_{m}$ be a basis of $V$ and $w_{1}, \ldots, w_{n}$ be a basis of $W$. Then if $\varphi \in \operatorname{End}(V, W)$, let $a_{i j}$ be the $w_{j}$-component of $\varphi\left(v_{i}\right)$. Then $A=\left(a_{i j}\right)$ is an $m \times n$-matrix, and the map $\varphi \mapsto A$ is a homomorphism. Furthermore, it is an isomorphism, since if $A$ is the zero matrix, $\varphi \equiv 0$, as it vanishes on a basis. Furthermore, if $A$ is any matrix, then one may define a linear transformation via:

$$
\varphi\left(t_{1} v_{1}+\cdots+t_{m} v_{m}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} t_{i} w_{j}
$$

(3) Observe that if $\varphi, \psi \in \operatorname{Ann}\left(V_{0}\right)$, then if $v \in V_{0},(\varphi+\psi)(v)=\varphi(v)+\psi(v)=0$. Similarly, $c \varphi(v)=0$. Therefore, $\operatorname{Ann}\left(V_{0}\right)$ is a vector subspace. Assume that $\operatorname{dim}\left(V_{0}\right)=k$, and that $v_{1}, \ldots, v_{k}$ form a basis of $V_{0}$. Then a matrix $A$ corresponds to an element of $\operatorname{Ann}\left(V_{0}\right)$ if it takes the following form:

$$
\left(\begin{array}{cccccc}
0 & \ldots & 0 & * & \ldots & * \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & * & \ldots & *
\end{array}\right)
$$

where the block of 0 's is an $k \times n$ block. Therefore, the dimension of $\operatorname{Ann}\left(V_{0}\right)$ is $(m-k) \cdot n$.
(4) Given an element $\lambda \otimes w \in V^{*} \otimes W$, let $\varphi_{\lambda, w}(v)=\lambda(v) w$. This gives a homomorphism from $V^{*} \otimes W$ to $\operatorname{End}(V, W)$, since the map $(\lambda, w) \mapsto \varphi_{\lambda, w}$ is bilinear. The map is an isomorphism. Let $\pi: V^{*} \otimes W \rightarrow V_{0}^{*} \otimes W$ be the restriction map, $\pi(\varphi \otimes w)=\left(\left.\varphi\right|_{V_{0}} \otimes w\right)$. Then $\pi$ is a surjective homomorphism, and it is clear that ker $\pi=\operatorname{Ann}\left(V_{0}\right)$, since $\operatorname{Ann}\left(V_{0}\right)$ are exactly the transformations which restrict to the trivial transformation on $V_{0}$. Hence $\operatorname{dim}\left(\operatorname{Ann}\left(V_{0}\right)\right)=\operatorname{dim}\left(V^{*} \otimes W\right)-\operatorname{dim}\left(V_{0}^{*} \otimes W\right)=m \cdot n-k \cdot n=n(m-k)$, as clained.

