
SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 1

SOLUTIONS

In the following problems, a “fake n-manifold” is a topological spaceM which is locally Euclidean.
That is, for every point p ∈M , there exists a neighborhood U ⊂M of p, an open set V ⊂ Rn and
a homeomorphism ϕ : U → V .

Problem 1. Let M be a connected topological n-manifold, and C ⊂M be a closed proper subset.
Let Mf be the set

Mf =

{
(x, a) : x ∈M, and a = 0, x 6∈ C

a = ±1, x ∈ C

}
Define a topology on Mf as being generated by two types of open sets from derived from the

topology on M : If U ⊂M is open, let

• U# = {(x, 0) : x ∈ U \ C} ∪ {(x, 1) : x ∈ C ∩ U}, and

• U [ = {(x, 0) : x ∈ U \ C} ∪ {(x,−1) : x ∈ C ∩ U}.
Show that, with the topology generated by sets of the form U ] and U [, Mf is a fake n-manifold,
but not a manifold. What happens if C =M?

Solution. We first claim that Mf is locally Euclidean. Fix pf = (p, σ) ∈ Mf . Since M is an
n-manifold, there exists some U ⊂M and some map ϕ : U → Rn which is a homeomorphism onto
its image.
Case: p 6∈ C. In this case U0 = U \ C still contains p, and ϕ|U0 is a homeomorphism onto its
image, since it is the restriction of a homeomorphism. Therefore, U0 × {0} ⊂ Mf is open and
ϕf (x, σ) = ϕ(x) is a homeomorphism onto its image, since U ]0 = U [0 projects to U0.
Case: p ∈ C. In this case, σ = ±1. Without loss of generality consider σ = 1. With U as above,
we claim that the set U ] is naturally homeomorphic to U (which is itself homeomorphic to an open
subset of Rn). Indeed, define g] : U → U ] by g(p) = (p, 1). Since the topology on U ] is generated
by sets of the form V ] ∩U ] and V [ ∩U ], where V ⊂M is open, we must show that their projection
to M is open. Indeed, the M -projection of V ] ∩ U ] is V ∩ U , and the M -projection of V [ ∩ U ]+ is
(V \C)∩U . Since C is closed, this set is open. Conversely, if V ⊂ U is open, then V ] = g](V ) ⊂ U ]
is open. Thus, we conclude that g] is a homeomorphism, and Mf is locally Euclidean.

Finally, we claim thatMf is not Hausdorff. Indeed, pick any p ∈ C such that every neigbhorhood
U of p is not contained in C. Such a point must exist, otherwise every point of C is an interior
point, and C is both open and closed. Since M is connected, C would be trivial or empty, which
violates that it is proper. Now, with such a p in hand, notice that (p, 1), (p,−1) ∈ Mf are points,
and any neighborhood of (p, 1) must be of the form U ]1, where U1 is a neighborhood of p, while
any neighborhood of (p,−1) must be form U [2, where U2 is a neighborhood of p. Then U1 ∩ U2

is a neighborhood of p, and by choice of p, U1 ∩ U2 ∩ (M \ C) 6= ∅. Therefore, U ]1 ∩ U [2 contains
(U1∩U2∩ (M \C))×{0}, which is nonempty. Therefore, Mf is not Hausdorff. Note that if C =M ,
then M [ is exactly M × {−1, 1}, which is a manifold. �
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Problem 2. Give an example of a Hausdorff fake n-manifold which is not a manifold (and justify
why it is not a manfiold).

Solution. Let S be any set of uncountable cardinality, and give it the discrete topology. Then
M# = R× S is locally Euclidean (it is locally homeomorphic to R. However, {0} × S is exactly S
with the discrete topology, which does not have a countable basis. Therefore,M# is not a manifold,
since it is not second countable. �

Problem 3. Show that Sn =
{
x ∈ Rn+1 : ||x|| = 1

}
has a canonical smooth n-manifold structure

by explicitly finding a smooth atlas and showing the atlas is smooth.

Solution. We use the stereographic projections to construct our charts. Let ϕ1(x1, . . . , xn+1) =
1

1−xn+1
(2x1, . . . , 2xn) be defined from Sn \ {(0, . . . , 0, 1)} to Rn. We claim that ϕ1 is a homeomor-

phism onto its image. Indeed, its inverse can be computed explicitly, and is the rational function

ϕ−11 (y1, . . . , yn) =
1

4 +
∑
yi2

(
4y1, . . . , 4yn,−4 +

∑
y2i

)
.

Similarly, we let ϕ2(x1, . . . , xn+1) = 1
1+xn+1

(2x1, . . . , 2xn) be defined on Sn \ {(0, . . . , 0,−1)}.
Then

ϕ−12 (y1, . . . , yn) =
1

4 +
∑
yi2

(
4y1, . . . , 4yn, 4−

∑
y2i

)
.

To show that ϕ1 and ϕ2 form a smooth atlas, we must confirm that ϕ1 ◦ϕ−12 is a diffeomorphism
from Rn \ {0} to itself. Indeed,

ϕ1 ◦ ϕ−12 (y1, . . . , yn) =
4 +

∑
y2i

4
∑
y2i

(y1, . . . , yn),

which is indeed a well-defined diffeomorphism from Rn \ {0} to itself. �

Problem 4. Show that if M is a smooth m-manifold and N is a smooth n-manifold, then M ×N
has a canonical smooth (m+ n)-manifold structure.

Solution. First, notice that ifM and N are both Hausdorff and second countable, then so isM×N .
We now construct a smooth atlas on M × N . Indeed, fix atlases AM for M and AN for N ,
respectively. Then if (U,ϕ) ∈ AM and (V, ψ) ∈ AN , let ϕ × ψ : U × V → Rn+m be defined by
ϕ× ψ(x, y) = (ϕ(x), ψ(y)).

We claim that the collection of pairs (ϕ×ψ,U×V ) ∈ AM ×AN is a smooth atlas. Indeed, notice
that U1 × V1 and U2 × V2 intersect if and only if U1 ∩ U2 6= ∅ and V1 × V2 6= ∅. Furthermore, the
corresponding maps satisfy:

(ϕ2 × ψ2) ◦ (ϕ1 × ψ1)
−1 = (ϕ2 ◦ ϕ−11 )× (ψ2 ◦ ψ−11 ),

which is verified directly by computation. Since the maps repsect the decomposition into direct
products, it is C∞ since each component is C∞. Therefore, we have constructed a smooth atlas. �

Problem 5. Show that R2 \ {0}, A =
{
x ∈ R2 : 1 < ||x|| < 2

}
and S1× (0, 1) are all diffeomorphic

with their standard smooth structures.

Solution. We construct a diffeomorphism between S1 × (0, 1) and the first two manifolds. First,
define F : S1 × (0, 1)→ R2 \ {0} as
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F (x, t) =
tx

1− t
.

Then F is invertible and F−1(y) = (y/ ||y|| , ||y|| /(1+ ||y||)). Since ||·|| is differentiable except at
y = 0, F is a diffeomorphism between S1 × (0, 1) and R2 \ {0}.

Now we construct a diffeomorphism between S1× (0, 1) and A. Let G(x, t) = (t+1)x. It is clear
that G is smooth and that G−1(y) = (y/ ||y|| , ||y|| − 1). Therefore, G is a diffeomorphism �

Problem 6. Let X denote the boundary of the unit square in R2. Prove or find a counterexample:
(1) X is a topological 1-manifold.
(2) There exists a smooth structure on X.
(3) There exists a smooth structure on X such that the inclusion of X into R2 is C∞.
(4) There exists a smooth structure on X such that the inclusion of X into R2 is an immersion.

Solution.
(1) and (2) These exist. Choose any homeomorphism between ∂I2 and S1. For instance, define

F : ∂I2 → S1 by ϕ(x) = x/ ||x|| (here, we take I = [−1/2, 1/2] rather than [0, 1]). If
U ⊂ S1 and ϕ : U → R is a smooth chart for S1, let V = F−1(U) and ϕ̃(x) = ϕ ◦ F . We
claim that the collection of charts ϕ̃, where ϕ is a smooth chart for S1 is a smooth structure.
Indeed, the transition functions are exactly

ϕ̃1 ◦ ϕ̃2
−1 = (ϕ1 ◦ F ) ◦ (ϕ2 ◦ F )−1 = ϕ1 ◦ ϕ−12 .

These are clearly C∞, so we have constructed a smooth structure. Furthermore, the map
F is a diffeomorphism when using these charts, since when using the charts ϕ and ϕ̃ on S1

and ∂I2, respectively, the map F is represented by the identity.
(3) This exists. We refine the choice of F from the previous construction. Indeed, we define

F piecewise on each segment of the boundary. We define it on {1/2} × [−1/2, 1/2], the
definition on the remaining components is clear. Let ψ : (−1, 1) → [−1/2, 1/2] be any C∞

function such that
(a) ψ′(t) > 0 when t ∈ (−1/2, 1/2),
(b) ψ(k)(t) = 0 for all k ≥ 1 when |t| ≥ 1/2,
(c) ψ(−1/2) = −1/2, and
(d) ψ(1/2) = 1/2.
Notice that ψ must be invertible on [−1/2, 1/2] (since it is increasing), which we use

in the following (we denote (ψ|[−1/2,1/2])−1 by ψ−1 for simplicity of notation). Give ∂I2

the smooth structure, where the charts are given locally by maps ϕ(1/2, t) = ψ−1(t) (and
similarly for other edges of the square). At the corner point (−1/2,−1/2), we define

ϕ(s, t) =

{
ψ−1(s) t = −1/2
−1− ψ−1(t) s = −1/2

on the set ({−1/2} × [−1/2, 1/2)) ∪ ([−1/2, 1/2) × {−1/2}). Notice that the image
of [−1/2, 1/2) under ψ−1 is [−1/2, 1/2), and the image under −1 − ψ−1 is (−3/2,−1/2].
Furthermore, the map is well defined at (−1/2,−1/2), since−1/2 = −1−(−1/2). Hence ψ−1
is a homeomorphism from the union of the edges meeting at (−1/2,−1/2) and (−3/2, 1/2).
Such a family clearly forms a smooth atlas when using similar definitions at other corner
points, since the intersections consist only of open intervals, and transition maps are given
by compositions of ψ, ψ−1 and the inversion of the interval, I(x) = −x, which are C∞ on
the interiors.

3



Then since ψ is C∞, on the interior of the edges, the inclusion is clearly C∞. At the
corner point, observe that the inclusion is determined by ψ, and since all derivatives vanish,
the inclusion is C∞.

(4) This does not exist. Assume that the inclusion of ∂I2 is an immersion. Choose a local
chart centered at a corner point. Without loss of generality, assume that U is a neighborhood
of (1/2, 1/2) in ∂I2, and ϕ : U → R is a chart such that ϕ(1/2, 1/2) = 0. Then ϕ is
invertible, and since the inclusion is an immersion, ϕ−1 : (−ε, ε) → R2 is C∞. Without
loss of generality, assume that negative values of t are taken to the horizontal edge near
(1/2, 1/2) and positive values are taken to the vertical edge. Then for each ε > δ > 0, by
the Mean Value Theorem, there exists some t ∈ (0, δ) such that (ϕ−1)′(t) is a vertical vector
(ie, has 0 as its first component). Similarly, for every −ε < δ < 0, there exists some t ∈ (0, δ)
such that (ϕ−1)′(t) is a horizontal vector (ie, has 0 as its second component). Therefore,
(ϕ−1)′(0) must have zero in both components, since it is a limit of such vectors. Therefore,
(ϕ−1)′(0) = 0, which contradicts that the inclusion is an immersion.

�
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Linear algebra and vector calculus review
Problem 7. Let F : Rn → Rn be a diffeomorphism, and assume that there exists a v ∈ Rn such
that v is an eigenvector of DF (x) with real eigenvalue for every x ∈ Rn. Show that the lines
L(x) = {x+ tv : t ∈ R} are equivariant: F (L(x)) = L(F (x)).

Solution. Since F is a diffeomorphism and DF (p)−1 = DF−1(F (p)), it follows that if v is an
eigenvector with eigenvalue λ(p) for every matrix DF (p), the it is also an eigenvector of DF−1(q) of
eigenvalue λ−1 for every q ∈ Rk. Notice that 0 cannot be an eigenvalue since DF must be invertible.

Hence it suffices to show that F (L(x)) ⊂ L(F (x)), as the opposite inclusion will follow from the
analysis on F−1. Let γx : R→ Rn be the map γx(t) = x+ tv, so that L(x) is the image of γx. Then
F (L(x)) is the image of F ◦ γ. But the derivative of F ◦ γ at t is

DF (γ(t))γ′(t) = DF (γ(t))v = λ(γ(t))v,

which is a multiple of v by assumption. Therefore,

F (γ(t)) = F (x) +

∫ t

0
DF (γ(s))γ′(s) ds = F (x) +

∫ t

0
λ(γ(s)) ds · v.

Hence, F (L(x)) ⊂ L(F (x)), as claimed. �

Problem 8. Let V and W be (real) finite-dimensional vector spaces and End(V,W ) be the set of
linear transformations from V to W .

(1) Show that End(V,W ) is a real vector space.
(2) With fixed bases for V and W , find an isomorphism between End(V,W ) and M(m,n), the

set of m× n matrices, where m = dim(V ) and n = dim(W ).
(3) If V0 ⊂ V is a subspace of V , let Ann(V0) ⊂ End(V,W ) be the annihilator of V0. That

is, the set of ϕ ∈ End(V,W ) such that ϕ(v) = 0 for all v ∈ V0. Show that Ann(V0) is a
vector subspace of End(V,W ), then find and prove a formula for dim(Ann(V0)) in terms of
dim(V ), dim(W ) and dim(V0). [Hint: It might be useful to think about it as matrices using
the previous part]

(4) * Find a canonical isomorphism between V ∗ ⊗W and End(V,W ), and prove it is an iso-
morphism. Construct a projection π : V ∗ ⊗W → V ∗0 ⊗W such that Ann(V0) = kerπ, and
prove that it is a projection, and that the kernel is as described. Deduce the formula for
dim(Ann(V0)) using π, as well.

Solution.
(1) Let ϕ,ψ ∈ End(V,W ). Then ϕ+ψ is also a linear transformation, and hence in End(V,W ).

Similarly, if c ∈ R, (cϕ)(v) = cϕ(v) is a linear transformation. Hence End(V,W ) is a real
vector space.

(2) Let v1, . . . , vm be a basis of V and w1, . . . , wn be a basis of W . Then if ϕ ∈ End(V,W ), let
aij be the wj-component of ϕ(vi). Then A = (aij) is an m× n-matrix, and the map ϕ 7→ A
is a homomorphism. Furthermore, it is an isomorphism, since if A is the zero matrix, ϕ ≡ 0,
as it vanishes on a basis. Furthermore, if A is any matrix, then one may define a linear
transformation via:

ϕ(t1v1 + · · ·+ tmvm) =

m∑
i=1

n∑
j=1

aijtiwj
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(3) Observe that if ϕ,ψ ∈ Ann(V0), then if v ∈ V0, (ϕ + ψ)(v) = ϕ(v) + ψ(v) = 0. Similarly,
cϕ(v) = 0. Therefore, Ann(V0) is a vector subspace. Assume that dim(V0) = k, and that
v1, . . . , vk form a basis of V0. Then a matrix A corresponds to an element of Ann(V0) if it
takes the following form: 0 . . . 0 ∗ . . . ∗

...
...

...
...

0 . . . 0 ∗ . . . ∗


where the block of 0’s is an k×n block. Therefore, the dimension of Ann(V0) is (m−k) ·n.

(4) Given an element λ ⊗ w ∈ V ∗ ⊗ W , let ϕλ,w(v) = λ(v)w. This gives a homomorphism
from V ∗ ⊗ W to End(V,W ), since the map (λ,w) 7→ ϕλ,w is bilinear. The map is an
isomorphism. Let π : V ∗ ⊗W → V ∗0 ⊗W be the restriction map, π(ϕ ⊗ w) = (ϕ|V0 ⊗ w).
Then π is a surjective homomorphism, and it is clear that kerπ = Ann(V0), since Ann(V0)
are exactly the transformations which restrict to the trivial transformation on V0. Hence
dim(Ann(V0)) = dim(V ∗ ⊗W )− dim(V ∗0 ⊗W ) = m · n− k · n = n(m− k), as clained.

�
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